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Outline  2

▪ Linear regression
▪ Empirical loss function/cost function
▪ Optimizing the empirical loss function
▪ Overfitting/underfitting



3Review from last week
Introduced Arhhsial Intelligence (AI)

Machine Learn approach (ML) to Al

supervised leary unsupervised lear
N

N(xi , y)i= 4 xi di
= 1s

feature labels

Vectors ex : pattern recogni
hea such as

f : + Y
clustery or dimensionality reducter

↓

find f



4Theory - linear predictors

Training data 

Linear predictor  

Tuning, training, fitting a parameter: finding the best parameter  

f(x) = b + w1x1 + … + wdxd

d - M

4 xi , yi) : EIR y FIR -
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w ...., wa) EIR
d+7

I fo (x) = wa = (b .
w , , ....wi[*]⑫ = (1 , , ...d) EIR
d+7

W EIR
&

&



5Linear Regression
Loss function (also referred to as cost or objective function)

Q: How to choose  and  such that the predicted value  is as close as possible of the real value ? w1 b ̂yi = wxi + b y(i)

Prediction, prediction error 

Squared prediction error 

Mean squared prediction error 

Empirical loss/cost function for training: 

J(w) = 1
N

N

∑
i=1

(wTxi − yi)2

Consider ii
,
true label yi

1 T

ei = (yi - yi)
predicted label y = wa

ni

I y
- yijz
- S (yi - yi)z
Ni = 1

d+ 1

w = [] R



6Linear Regression

Q: How to minimise the loss function? 

Optimizing the loss function
Linear Regression

y

5 sm : (wixi -yi)2

y ↑
& wi·PEIR ⑤

zg
-

& wp
wz My



7Optimization - brief review

Unconstrained minimisation of differentiable function 

Necessary optimality condition 

8. IR -> IR , min G (wi
W

if we is a minimizer then 08(w1 = 0 EIRP

first. order candidan :

any
we minimizer should be a part

where = O * f (w) =
0 G X

T Ij
&

->
* W

su

& J(wa = 0
is not a sufficient concited for we to be a mini men



8Optimization - convex functions

For convex functions, the first-order condition of optimality is necessary and sufficient 

Characterization of convexity for twice differentiable functions based on the Hessian matrix 

- -

wo is ophmal #D &(W) = 0 EIR
P

8. IR" -IR is convex if Henan of 81) is

Presems definite

pXP

Hessian : H : =0-J (u) -> IR Hij(w = g(u)
,
i

, j = 1 , p
& widwj



9Review - positive (semi) definite matrices
Definition 

Consider the matrices 

Which are positive (semi) definite?  

DXP
! a many A E IR IS positive (semil definite if

V we IRP
,

wi Aw > O for any w + 0.

/semi

A : to'i] Ac [, %] · As : 2]

A , [W , na]('079w] -v wi posible dele

Azi
u .

"

+ Wa + W
,
We => positive dehule

2
As -

Wi + w
+ TW , We D not posite semi definite



10Review - positive (semi) definite matrices
Test for positive (semi)definiteness  A EIR

B Xp wEIRP * 7

uTA w = WTATw
=D urAw :

wi M
M S immelna

A symmeluc malxv is posite (semi) definite if
part of A.

all eigenvales of M are posite (nonnegabre).

=> A is posite /semil definit #D AtAT has

posite (non-negate) engenvalues.



Optional Non-convex Convex

Several local minima

Optimization of convex function

I wi

↑
& neshers break :burg

i
1) Why not tak e = / wix-yi) (absolute value erro ?)

2) if there are multiple us such that 88 (w) = 0 ,
which

one gives
lower cost ? for convex truchen doesn't mutter

all give same cost



12Review - gradient vector and Hessian matrix
For an affine function

Consider f : IRP -> IR F Suppose f (w) = atw

of
* f(w) = a + IRP J& zw,

()
pXp If& f(w) = 0 E IR zu

13



13Review - gradient vector and Hessian matrix
For a quadratic function

- (r) - TA w f : /R
*
-> IR

- f (w) = (A + AT) w EIRP

& f (w) = A + AT (note : If A is symmets)
of(u) = 2A

Calgebra l .

See additonal notes posted for dervalen



14Linear Regression - Loss function optimization
Loss function is quadratic in the parameter 
Gradient vector of the loss function 

J(w) = 1
N

N

∑
i=1

(wTxi − yi)2

& (w)
-> Ir

* + 1

N

· g(w: xi
- j() + (wixi -yi)

W

W

i

= /

N

=
- 2 (xi (wixi - yi) + xi (wixi - yi)] =

Ni = 1

N

= z2xi (wixi -yi)
Ni = 1



15Linear Regression - gradient of the loss function

∇wJ(w) =

∂J(w)
∂b

∂J(w)
∂w1

∂J(w)
∂w2. . .

∂J(w)
∂wd

= 2
N

N

∑
i=1

xi(wTxi − yi), where  w ∈ Rd+1 =
b
w1…
wd

-Wo
d + 7

-> IR

d + 7
↑

xi = (1 , x, ..., xi)) EIR

#

T



16Vector notation for gradient of the loss function

X ∈ RN×(d+1) =
1 x1

1 x1
2 … x1

d

1 x2
1 x2

2 … x2
d. . .

1 xN
1 xN

2 … xN
d

, w ∈ Rd+1 =
b
w1…
wd

J(w) = 1
N

N

∑
i=1

(wTxi − yi)2

∇J(w) = 2
N

XT(Xw − y)

Define data matrix

Verify that: 

Conclude ∇2J(w) = 2
N

XT X

J(w) = 1
N

(Xw − y)T(Xw − y)Can be equivalently written as :

y
N

S 3() EIR

in

-

T
↳> if questone , ask in exercise hour Jiu-uiXXw-wiXy

+ yTy)



17Linear Regression - Loss function optimization

w* = (XTX)−1 XT y

∂J(w)
∂w

= 2
N

XT(Xw − y) = 0 ⟺ w = (XTX)−1Xty

∇2J(w) = 2
N

XT X

Verify that the loss function is convex

Optimizer 

↑

· M = A A ~T ATAu =
w

,
= An

-S
-O

Under which conditions XTX is invertible ?



18Linear Regression - Loss function optimization

Q: is this computationally efficient for large data sets?  

inverse of : 

• Computational complexity is  to  depending on the algorithm used.. 

XTX
O(d2.4) O(d3)

w* = (XTX)−1 XT y

Also
,
in

many
ML approaches we may

not be able

to find the solute of 8 (we) = 0 , to find

a good parameter



19Linear Regression
Gradient Descent

Alternative approach to compute  arg min
w

J(w) = 1
N

N

∑
i=1

(wTxi − yi)2

Gradient Descent:  

• Calculate the gradient of  at the starting point. 

• Iteratively update ( )  by taking steps in the direction of the negative gradient
J(w)

w



20Linear Regression 

The iterative update is performed as follows 

• w next iteration = w − α∇wJ(w)

∇wJ(w) =

∂J(w)
∂b

∂J(w)
∂w1

∂J(w)
∂w2. . .

∂J(w)
∂wd

Optimizing loss function through gradient descent

w = Ir
++

/
dtIR + Pstepsize/lear rule

&wf(w) = Ipp+
]



Optional Non-convex Convex

Can be trapped in local minima

Does gradient descent converge? 

i
i

a T
&

for
connex funche by suitably choosy a , gradient descent

converge to we (an ophmized
a

for non connex funcher
you may get

sticklocal minimum



22Linear Regression 

 

Since loss function of linear of linear regression is convex, there exists a choice of learning 
rate/step size           so that the iteration converges

w(t + 1) = w(t) − α∇J(w(t))

Optimizing loss function through gradient descent

S -



23Nonlinear transformations of data
• Feature map/feature vector

\xi , yi\N
-
-

↓ : IR" - RP

example : Let <
EIR2

,
D

,

(x11x2) = x , x2 , b(x , , x2) = Six ,

D (X , , (2) = coSX2

fo(x) = b
+
w

,
b
,

(x) + wadz(x) + w
-
by(x)

----

(pix] ,

-[]N I

j(m = + ( uT D(xi) - yi)a ,
di : Raci ,

psai &
3

& is still convex quadrate in we

Exercise : compute Unf (M , Nig (2)



Feature expansion
Overview

Feature expansion is the process of creating derived features from the input data 
▪ Adds complexity 
▪ Can significantly improve performance 

Popular feature expansion techniques:  
▪ Feature crosses: Multiply features together  
▪ Applying a non-linear function to each feature (e.g., sin, log, polynomials) 
▪ Often requires insight about the problem

24



Feature expansion
Polynomial feature expansion

Polynomial feature expansion:  
Generate a new feature vector consisting of all polynomial combinations of the 
features with degree less than or equal to a given degree

x = (x1, x2, x3) (1, x1, x2, x3, x2
1 , x1x2, x1x3, x2

2 , x2x3, x2
3)

Second order 
polynomial feature 

expansion

25



Feature expansion
Polynomial feature expansion

26

9

&



Overfitting and underfitting

27



Train and test set
Goal of supervised ML models: generalise well on new data (based on the patterns learned 
from known data). 

Performance metric:  

Training versus Test performance:  

28

example (fro Pest Yeest)
2

-

↓

well does the model predict the
how

-
-

-

output of an "unseen" data test

/

(fw(xis - yizz



Your Dataset

Split data into train and test

Train Test

Train and test

Later in the course we will see split into 3 sets: train, validate and test sets in 
order to find best “hyper”-parameters of the model

I , 2 &
& ↑

↑ N

80% traing 20% test

indices i
, , 12 , ... ,

i
N ,

for traing & xi , yih
-

&

-L
1 I

,
-.
, / for test

N, + 1 N
, + 2 N



Underfitting & Overfitting

Goal of supervised ML models: generalise well on new data (based on 
the patterns learned from known data). 

Two situations where it fails: 
• Underfitting 
• Overfitting

30



Underfitting

Underfitting: the model doesn’t fit well on the training data. 

Reason: model too simple  can’t capture the underlying patterns within 
the data. 

The model (the line) doesn’t capture the U shape of the data set. 

 Solution: choose a more complex algorithm/model to better fit the data.

→

→

Underfitting & Overfitting 31



37Summary

▪ Linear regression

▪ Empirical loss function/cost function

▪ Optimizing the empirical loss function

▪ Overfitting/underfitting

-

~

-

~ mohr



38Exercise hour

• This week:

▪ Review background on gradient, Hessian and optimization (see notes posted)
▪ You will use python to do a linear regression
▪ Link to the exercises will be published on moodle



39Introduction Logistic regression Linear regression 

KNN 

Clustering 

Neural networks Convolutional neural 
networks 

Naive Bayes

Decision-trees  

Dimensionality reduction Reinforcement learning 

AI ethics


